Publications
Main content start
Site content
- Ma, W. (2023). Feature-Prompting Protocols for Data-Driven Health Estimation and Lifetime Prediction of Lithium Metal Batteries [Stanford University]. https://stacks.stanford.edu/file/druid:zg095vn6290/master_thesis_Wenting_Ma_final.pdf
- Moy, K. (2023). Towards decarbonized electric grid and transportation sectors : a modelling, battery-centric study [Stanford University]. https://searchworks.stanford.edu/view/in00000001655
- 77. Lu, Z., Tian, G., & Onori, S. (2022). Rule-Based Time-Optimal Engine-Start Coordination Control with a Predesigned Vehicle Acceleration Trajectory in P2 Hybrid Electric Vehicles. ASME. J. Dyn. Sys., Meas., Control. https://doi.org/10.1115/1.4056154
- 76. Azimi, V., Allam, A., & Onori, S. (2022). Extending life of Lithium-ion battery systems by embracing heterogeneities via an optimal control-based active balancing strategy. IEEE Transactions on Control System Technology. https://doi.org/10.1109/TCST.2022.3215610
- 75a. Pozzato, G., Takahashi, A., Li, X., Lee, D., Ko, J., & Onori, S. (2022). Errata Corrige – Addressing the surface concentration discontinuity of the core-shell model for lithium iron phosphate batteries. Journal of The Electrochemical Society, 169(10), 100526. https://pangea.stanford.edu/ERE/pdf/OnoriPDF/Journals/75erratum.pdf
- 75. Pozzato, G., Takahashi, A., Li, X., Lee, D., Ko, J., & Onori, S. (2022). Addressing the surface concentration discontinuity of the core-shell model for lithium iron phosphate batteries. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ac93b7
- 74. Natella, D., Onori, S., & Vasca, F. (2022). A co-estimation framework for state of charge and parameters of Lithium-ion battery with robustness to aging and usage conditions. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2022.3194576
- 73. Pozzato, G., Takahashi, A., Li, X., Lee, D., Ko, J., & Onori, S. (2022). Core-shell enhanced single particle model for lithium iron phosphate batteries: model formulation and analysis of numerical solutions. Journal of The Electrochemical Society, 169. https://doi.org/10.1149/1945-7111/ac71d2
- 72. Pozzato, G., Allam, A., & Onori, S. (2022). Lithium-ion battery aging dataset based on electric vehicle real-driving profiles. Data in Brief, 41, 107995. https://doi.org/10.1016/j.dib.2022.107995
- 71. Pozzato, G., Rizzo, D., & Onori, S. (2022). Mean-value exergy modeling of internal combustion engines: characterization of feasible operating regions. ASME. J. Dyn. Sys., Meas., Control, 144(6), 061009. https://doi.org/10.1115/1.4053945
- 70. Allam, A., & Onori, S. (2021). Linearized versus nonlinear observability analysis for Lithium-ion battery dynamics: why respecting the nonlinearities is key for proper observer design. IEEE Access, 9, 163431-163440. https://doi.org/10.1109/ACCESS.2021.3130631
- 69. Lee, S., & Onori, S. (2021). A Robust and Sleek Electrochemical Battery Model Implementation: A MATLAB® Framework. Journal of The Electrochemical Society, 168, 090527. https://doi.org/10.1149/1945-7111/ac22c8
- 68. Moy, K., Lee, S., Harris, S., & Onori, S. (2021). Design and Validation of Synthetic Duty Cycles for Grid Energy Storage Dispatch Using Lithium-ion Batteries. Advances in Applied Energy, 4, 100065. https://doi.org/10.1016/j.adapen.2021.100065
- 67. Dettù, F., Pozzato, G., Rizzo, D., & Onori, S. (2021). Exergy-based modeling framework for hybrid and electric ground vehicles. Applied Energy, 300, 117320. https://doi.org/10.1016/j.apenergy.2021.117320
- 66. Catenaro, E., Rizzo, D., & Onori, S. (2021). Framework for energy storage selection to design the next generation of electrified military vehicles. Energy, 231, 120695. https://doi.org/10.1016/j.energy.2021.120695
- 65. Mamun, A., Zhu, Q., Hoffman, M., & Onori, S. (2021). Physics-based linear model predictive control strategy for three-way catalyst air/fuel ratio control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(14), 3339-3357. https://doi.org/10.1177%2F09544070211021207
- 64. Gelmini, S., Hoffman, M., & Onori, S. (2021). Design and Experimental Validation of three way catalyst age estimator using Fisher information analysis for optimal sensor selection. Control Engineering Practice, 112, 10480. https://doi.org/10.1016/j.conengprac.2021.104805
- 63. Lam, F., Allam, A., Joe, W., Choi, Y., & Onori, S. (2021). Offline Multiobjective Optimization for Fast Charging and Reduced Degradation in Lithium-Ion Battery Cells Using Electrochemical Dynamics. IEEE Control Systems Letters, 5(6), 2066-2071. https://doi.org/10.1109/LCSYS.2020.3046378
- 62. Moy, K., Lee, S., & Onori, S. (2021). Characterization and synthesis of duty cycles for battery energy storage used in peak shaving dispatch. ASME Letters, Dyn. Sys. Control, 1(4), 041008. https://doi.org/10.1115/1.4050192
- 61. Lu, Z., Tian, G., & Onori, S. (2021). Multistage Time-Optimal Control for Synchronization Process in Electric-Driven Mechanical Transmission With Angle Alignment Considering Torque Response Process. ASME J. Dyn. Sys., Meas., Control, 143(4), 041006. https://doi.org/10.1115/1.4048783